Archive




Volume 8, Issue 5, September 2019, Page: 72-75
Reversal Magnetocaloric Effect in the Antiferromagnetic TbFe2Al10 Compound
Ruo-Shui Liu, Department of Physics, Capital Normal University, Beijing, China
Jun Liu, Department of Physics, Capital Normal University, Beijing, China; State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing, China
Lichen Wang, Department of Physics, Capital Normal University, Beijing, China
Xiang Yu, Department of Physics, Capital Normal University, Beijing, China
Chenhui Lv, Department of Physics, Capital Normal University, Beijing, China
Zhengrui Li, Department of Physics, Capital Normal University, Beijing, China
Yan Mi, Department of Physics, Capital Normal University, Beijing, China
Lifeng Liu, Department of Physics, Capital Normal University, Beijing, China
Shuli He, Department of Physics, Capital Normal University, Beijing, China
Received: Sep. 1, 2019;       Accepted: Sep. 22, 2019;       Published: Oct. 20, 2019
DOI: 10.11648/j.ajmp.20190805.11      View  31      Downloads  16
Abstract
Magnetocaloric effect (MCE) technology is considered as one of the most important fundamental thermodynamic effects, and plays an important role in the refrigeration area for its high energy-efficiency and eco-friendly characteristics. Rear earth based low temperature magnetic refrigerant shows broad application prospect in the future. Low cost and high processability are so important to the application in the refrigeration machine. In this paper, pure phase TbFe2Al10 was prepared by arc melting and long-time annealing process. The magnetic properties and magnetocaloric effect (MCE) of the TbFe2Al10 compound were intensively studied. It was determined to be antiferromagnetic with the Néel temperature TN =18 K. Two metamagnetic transitions from antiferromagnetic (AFM) to ferrimagnetic (FIM) and ferrimagnetic to ferromagnetic (FM) state occurred at 5 K under a crucial applied magnetic field of 0.95 T and 1.89 T, respectively. Field variation generated a large MCE and no magnetic hysteresis loss was observed. The maximum values of magnetic entropy change (ΔS) were found to be -4.5 J/kg K and –6.7 J/kg K for the field changes of 0-5 T and 0-7 T, respectively. The large ΔS with no hysteresis loss as well as low proportion of rare earth (Tb) in crude materials make TbFe2Al10 a competitive candidate as low temperature magnetic refrigerant.
Keywords
TbFe2Al10, Antiferromagnetic, Metamagnetic Transition, Magnetocaloric Effect
To cite this article
Ruo-Shui Liu, Jun Liu, Lichen Wang, Xiang Yu, Chenhui Lv, Zhengrui Li, Yan Mi, Lifeng Liu, Shuli He, Reversal Magnetocaloric Effect in the Antiferromagnetic TbFe2Al10 Compound, American Journal of Modern Physics. Vol. 8, No. 5, 2019, pp. 72-75. doi: 10.11648/j.ajmp.20190805.11
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
C. Zimm, A. Jastrab, A. Sternberg, et al. Adv. Cryog. Eng. 43 (1998) 1759.
[2]
V. K. Pecharsky and K. A. Gschneidner, Jr., Phys. Rev. Lett. 78 (1997) 4494-4497.
[3]
Z. B. Guo, J. R. Zhang, H. Huang, W. P. Ding, Y. W. Du. Appl. Phys. Lett. 70 (1997) 904.
[4]
F. X. Hu, B. G. Shen and J. R. Sun. Appl. Phys. Lett. 76 (2000) 3460.
[5]
YiXu Wang, Hu Zhang*, Enke Liu, XiChun Zhong, Kun Tao, MeiLing Wu, ChengFen Xing, YaNing Xiao, Jian Liu, and Yi Long. Advanced Electronic Materials. 4 (2018) 1700636.
[6]
Hu Zhang, Andrew Armstrong, Peter Müllner. Acta Materialia 155 (2018) 175-186.
[7]
V. Franco, J. S. Blázquez, J. J. Ipus, J. Y. Law, L. M. Moreno-Ramírez, A. CondeProgress in Materials Science 93 (2018) 112–232.
[8]
L. I. Koroleva, A. S. Morozov, American Journal of Modern Physics 2 (2013) 61-67.
[9]
Si-yu Ma, Jian-fei Sun, Science Discovery 6 (2018) 27-34.
[10]
Franziska Scheibel, Tino Gottschall, Andreas Taubel, Maximilian Fries, Konstantin P. Skokov, Alexandra Terwey, Werner Keune, Katharina Ollefs, Heiko Wende, Michael Farle, Mehmet Acet, Oliver Gutfleisch, and Markus E. Gruner, Energy Technol. 6 (2018) 1397-1428.
[11]
F. X. Hu, B. G. Shen, J. R. Sun, et al. Appl. Phys. Lett. 78 (2001) 3675.
[12]
O Tegus, E Brück, K H J Buschow, et al. Nature (London) 415 (2002) 150-152.
[13]
W. F. Giauque and D. P. MacDougall, Physical Review 43 (1933) 0768.
[14]
Zheng Xin-Qi Shen Jun Hu Feng-Xia Sun Ji-Rong Shen Bao-Gen, Acta Physica Sinica 65 (2016) 217502.
[15]
Hashimoto T., Kuzuhara T., Sahashi M., Inomata K., Tomokiyo A., Yayama H. J. Appl. Phys. 62 (1987) 3873.
[16]
Y. Y. Gong, D. H. Wang, Q. Q. Cao, E. K. Liu, J. Liu, and Y. W. Du., Adv. Mater. 10 (2014) 1002.
[17]
M Reehuis, M WWolff, AKrimmel, E-WScheidt, N St¨usser, A Loidl1 and W Jeitschko, J. Phys. Condens. Matter 15 (2003) 1773-1782.
[18]
Ashish Khandelwal, V K Sharma, L S Sharath Chandra, M N Singh, A K Sinha and M K Chattopadhyay, Phys. Scr. 88 (2013) 035706.
[19]
Verena M. T. Thiede, Thomas Ebel and Wolfgang Jeitschko, J. Mater. Chem. 8 (1998) 125-130.
[20]
L. C. Wang, Q. Y. Dong, Z. J. Mo, Z. Y. Xu, F. X. Hu, J. R. Sun, and B. G. Shen. J. Alloys Compd. 587 (2014) 10-13.
[21]
S. K. Banerjee, Phys. Lett. 12 (1964) 16-17.
[22]
X. X. Zhang, F. W. Wang, and G. H. Wen, J. Phys.: Condens. Matter 13 (2001) L747-L752.
[23]
P. J. von Ranke, M. A. Mota, D. F. Grangeia, A. Magnus, G. Carvalho, F. C. G. Gandra, A. A. Coelho, A. Caldas, N. A. de Oliveira, and S. Gama, Phys. Rev. B 70 (2004) 134428-1-6.
Browse journals by subject