Archive




Volume 8, Issue 3, May 2019, Page: 40-49
Implementation of the 8-Nucleon Yakubovsky Formalism for Halo Nucleus 8He
Eskandar Ahmadi Pouya, Physics Department, Shahrood University of Technology, Semnan, Iran
Ali Akbar Rajabi, Physics Department, Shahrood University of Technology, Semnan, Iran
Received: May 28, 2019;       Accepted: Aug. 6, 2019;       Published: Sep. 10, 2019
DOI: 10.11648/j.ajmp.20190803.12      View  81      Downloads  20
Abstract
In order to study the bound-state structure of the Helium halo nuclei, the 8-nucleon Yakubovsky formalism has been implemented for 8He in a 5-body sub-cluster model, i.e. α+n+n+n+n. In this case, the 8-nucleon Yakubovsky equations have been obtained in the form of two coupled equations, based on the two independent components. In addition, by removing the contribution interactions of the 8 and 7’s bound nucleons in the formalism, the obtained equations explicitly reduce to the 6-nucleon Yakubovsky equations for 6He, in the case of effective 3-body model, i.e. α+n+n. In view of the expectation for the dominant structure of 8He, namely an inert α-core and four loosely-bound neutrons, Jacobi configurations of the two components in momentum space have been represented to provide technicalities which were considered useful for a numerical performance, such as bound-state calculations and momentum density distributions for halo-bound neutrons.
Keywords
8-Nucleon Yakubovsky Formalism, Halo Nucleus Helium-8, Effective α-core Structure, Jacobi Configurations, Bound State Problem, Halo-bound Neutrons
To cite this article
Eskandar Ahmadi Pouya, Ali Akbar Rajabi, Implementation of the 8-Nucleon Yakubovsky Formalism for Halo Nucleus 8He, American Journal of Modern Physics. Vol. 8, No. 3, 2019, pp. 40-49. doi: 10.11648/j.ajmp.20190803.12
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
M. Brodeur, et. al. Phys. Rev. Lett. 108, 052504 –31 Jan (2012).
[2]
M. V. Zhukov, et. al. Physics Reports, Volume 231, Issue 4, August (1993), Pages 151-199.
[3]
S. Bacca, A. Schwenk, G. Hagen, et. al. Eur. Phys. J. A, 42: 553 (2009).
[4]
L. B. Wang et al., Phys. Rev. Lett. 93, 142501 (2004).
[5]
P. Mueller et al., Phys. Rev. Lett. 99, 252501 (2007).
[6]
V. L. Ryjkov et al., Phys. Rev. Lett. 101, 012501 (2008).
[7]
S. C. Pieper and R. B. Wiringa, Annu. Rev. Nucl. Part. Sci. 51, 53 (2001); S. C. Pieper, arXiv: 0711.1500.
[8]
P. Navratil and W. E. Ormand, Phys. Rev. C 68, 034305 (2003).
[9]
P. Navratil, V. G. Gueorguiev, J. P. Vary, W. E. Ormand and A. Nogga, Phys. Rev. Lett. 99, 042501 (2007).
[10]
10. H. Kamada and W. Glӧckle, Nucl. Phys. A 548, 205 (1992).
[11]
A. Nogga, H. Kamada and W. Glöckle, Phys. Rev. Lett. 85, 944 (2000).
[12]
W. Glӧckle and H. Witala, Few-Body Syst. 51, 27-44 (2011).
[13]
E. Ahmadi Pouya and A. A. Rajabi, Acta, Phys, Pol, B 48: 1279 (2017).
[14]
E. Ahmadi Pouya and A. A. Rajabi, Eur. Phys. J. Plus, 131: 240 (2016).
[15]
A. C. Fonseca, Phys. Rev. C 30, 35 (1984).
[16]
W. Glöckle: The Quantum Mechanical Few-Body Problem. Springer-Verlag, New York (1983).
[17]
D. Huber, H. Witala, A. Nogga, W. Glӧckle and H. Kamada, Few-Body Syst. 22, 107 (1997).
[18]
E. Ahmadi Pouya and A. A. Rajabi, Karbala Int. J. of Mod. Science, Vol. 3, 4 (2017).
Browse journals by subject