Archive
2020, Volume 9
2019, Volume 8
2018, Volume 7
2017, Volume 6
2016, Volume 5
2015, Volume 4
2014, Volume 3
2013, Volume 2
2012, Volume 1




Volume 5, Issue 5, September 2016, Page: 146-153
Calculations of 2sns+1,3Se, 2snp+1,3P0, 2pnp+1,3De Autoionizing States in Two-Electrons Systems Using a New Wave Function to Four Terms
Boubacar Sow, Department of Physics, Atoms Laser Laboratory, University Cheikh Anta Diop, Dakar, Senegal
Youssou Gning, Department of Physics, Atoms Laser Laboratory, University Cheikh Anta Diop, Dakar, Senegal
Malick Sow, Department of Physics, Atoms Laser Laboratory, University Cheikh Anta Diop, Dakar, Senegal
Alassane Traore, Department of Physics, Atoms Laser Laboratory, University Cheikh Anta Diop, Dakar, Senegal
Ahmadou Wagué, Department of Physics, Atoms Laser Laboratory, University Cheikh Anta Diop, Dakar, Senegal
Received: Aug. 1, 2016;       Accepted: Aug. 15, 2016;       Published: Sep. 23, 2016
DOI: 10.11648/j.ajmp.20160505.15      View  3552      Downloads  119
Abstract
In this paper, we calculate energies for 2s3s+1,3Se, 2s4s+1,3Se, 2snp+1,3P0 with n≤6 and 2p3p+1,3De, 2p4p+1,3De autoionizing states of helium-like ions. These calculations are investigated using a new wave function correlated to four terms. Total energies calculations are performed between two electrons in He-isoelectronic series up to Z = 10, base on the Screening Constant by Unit Nuclear charge method in the framework of a variational procedure. The results obtained are in compliance with recent theoretical calculations.
Keywords
Autoionizing States, Wave Function Correlated, He-Isoelectronic, Screen Constant by Unit Nuclear Charge
To cite this article
Boubacar Sow, Youssou Gning, Malick Sow, Alassane Traore, Ahmadou Wagué, Calculations of 2sns+1,3Se, 2snp+1,3P0, 2pnp+1,3De Autoionizing States in Two-Electrons Systems Using a New Wave Function to Four Terms, American Journal of Modern Physics. Vol. 5, No. 5, 2016, pp. 146-153. doi: 10.11648/j.ajmp.20160505.15
Copyright
Copyright © 2016 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Madden. R. P. and K. Codling. (1965). Astrophys. J. 141, 364.
[2]
Hicks. P. J. and J. Comer. (1975). J. Phys. B. At. Mol. Phys. 8, 1866.
[3]
Ho, Y. K. and A. Bathia. (1991). Phys. Rev. A. 44, 2895.
[4]
M. Dieng, M. Biaye, Y. Gning, and A. Wague. (2013). Chinese Journal of Physics vol. 51, NO. 4.
[5]
M. Dieng, M. Tine, M. Sow, B. Diop, M. Guèye, M. Faye, I. Sakho, M. Biaye, A. Wagué. (2014). Radiation Physics and Chemistry 96, 38–43.
[6]
M. SOW. et al., (2014). Chinese Journal of Physics, Vol. 52, NO 5, 1459-1470.
[7]
B. Sow et M. Sow, Y. Gning, A. Traoré, A. S. Ndao, A. Wague. (2016). Radiation Physics and Chemistry 123, 25–30.
[8]
M. Dieng, I. Sakho, M. Biaye, A. Wagué. (2012.). Adv. Studies Theor. Phys., Vol. 6, no. 27, 1345 – 1354.
[9]
Frankowski, K. and C. F. Pekeris. (1966a). Phys. Rev. 146, 46.
[10]
Frankowski, K. and C. F. Pekeris. (1966b). Phys. Rev. 150, 366.
[11]
Forrey R. C. (2004). Phys. Rev. A 69, 022504.
[12]
Biaye M. (2005). Thèse de Doctorat d’état, Université Cheikh Anta Diop de Dakar.
[13]
M. Biaye, M. Dieng, I. Sakho, A. Konte, A. S. Ndao, and A. Wague.(2009). Chinese Journal of Physics. VOL. 47, NO. 2.
[14]
M. Biaye, A. Konte, N. A. B. Faye, A. Wague. (2005). Phys. Scr. 71, 39.
[15]
Youssou Gning, Malick Sow, Alassane Traoré, Matabara Dieng, Babacar Diakhate, Mamadi Biaye, Ahmadou Wagué. (2015). Radiation Physics and Chemistry 106, 1–6.
[16]
Hylleraas E. A. (1928). Zeits. f. Physik 48, 469.
[17]
Hylleraas E. A. (1929). Zeits. f. Physik 54, 347.
[18]
Chopolski. E. (1978). Physique Atomique (Paris: Mir) chapter 8, p 311.
[19]
Sakho, I. (2014). Chin. J. Phys. 52 (5).
[20]
Arun Goyal, Indu Khatri, Malick Sow, Ibrahima Sakho, Sunny Aggarwal, A. K. Singh, Man Mohan. (2016). Radiation Physics and Chemistry 125, 50–55.
[21]
M. Faye, B. Diop, M. Gueye, M. Dieng, I. Sakho, A. S. Ndao, M. Biaye, A. Wague. (2013). Radiation Physics and Chemistry 85, 1–7.
[22]
B. Diop, M. Faye, M. Sow, M. Dieng, M. Gueye, I. Sakho, M. Biaye, A. Wague. (2013). Radiation Physics and Chemistry 86, 1–5.
[23]
Ho, Y. K. (1981). Phys. Rev. A 23, 2137.
[24]
Inanov, A. I. and Safronova, U. I. (1993). Opt. Spectrosc. 75, 298.
[25]
Sakho, I. (2011). Euro. Phys. J. D 61, 267-283.
[26]
Lipsky, L. R. Anania, and M. J. Conneely. (1977). Atomic Data and Nuclear Data Tables. 20, 127.
[27]
Ray, D., Mukherjee, P. K. (1991). J. Phys. B 24, 1241.
[28]
Kar, S. and Ho, Y. K. (2009). J. Phys. B: At. Mol. Opt. Phys. 42, 044007.
[29]
Drake G W F and Dalgarno A (1971) Proc. Roy. Soc. London A 320, 549.
[30]
Seminario J M and Sanders F C. (1990). Phys. Rev. A 42 2562.
[31]
Ho, Y. K. (1986) Phys. Rev. A, 23, 2137; Phys. Scrip. 34 766.
[32]
Sakho, I., A. Konte, A. S Ndao, M. Biaye, and A. Wague. (2008). Phys. Scr. 77, 055303.
[33]
Sakho, I., et al., (2015a). Rad. Phys. Chem. 82, 110.
[34]
Sakho, I., et al., (2015b). Phys. Scr. 90, 045401.
Browse journals by subject